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1. Introduction

Recent interests have grown on connecting gene expression profiles to survival
patients’ times, see e.g. [30, 34], where the aim is to assess the influence of
gene expressions on the survival outcomes. The statistical analysis of such data
faces two sorts of problems. First, the covariates are high-dimensional: the num-
ber of covariates is much larger than the number of observations. Second, the
survival outcomes suffers from censoring, truncation, etc. The need of proper
statistical methods to analyze such data, in particular high-dimensional right-
censored data, led in the past years to numerous theoretical and computational
contributions.

When the survival times suffer from right-censoring, the problem can be
presented as follows. For an individual i ∈ {1, . . . , n}, let Ti be the time of
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interest (e.g. the patient survival time), let Ci be the censoring time and Xi

be the vector of covariates in Rd, assumed to be independent copies of T , C
and X = (X1, . . . , Xd). We observe Zi = Ti ∧ Ci, δi = 1(Ti ≤ Ci) and Xi for
i = 1, . . . , n.

The covariates vectorX , where both genomic outcomes and clinical data may
be recorded, is in high dimension d ≫ n and influences the distribution of T via
its conditional hazard rate given X = x, defined by

α0(t, x) =
fT |X(t, x)

1− FT |X(t, x)

for t > 0, where fT |X and FT |X are respectively the conditional density and
distribution functions of T given X = x. In the following, we assume that the
conditional hazard fulfills the Aalen additive hazards model [1]:

α0(t, x) = λ0(t) + x⊤β0, ∀t ≥ 0,

where λ0 is the baseline hazard function and β0 measures the influence of the
covariates on the conditional hazard function α0. In [21], an additive hazards
model is fitted to investigate the influence of the expression levels of 8810 genes
on the (censored) survival times of 92 patients suffering from Mantel-Cell Lym-
phoma, see [30] for the data. The Aalen additive hazards model is indeed an
useful alternative to the Cox model [10], in particular in situations where the
proportional hazards assumption is violated. It can also “be seen as a first-order
Taylor series expansion of a general intensity” (see [23], p. 103).

When the aim is then to understand the influence of X on the survival time
T , one wants to estimate β0 based on the observations. In small dimension
d ≪ n and from the data (Zi, δi, Xi)i=1,...,n, the least-squares estimator β̂ of the
unknown β0 is the minimizer of the quadratic functional

Rn(β) = β⊤Hnβ − 2β⊤
hn,

where Hn is the d× d symetrical positive semidefinite matrix with entries

(H)j,k =
1

n

n
∑

i=1

∫ Zi

0

(

Xj
i −

∑n
l=1 X

j
l 1(Zl ≥ t)

∑n
l=1 1(Zl ≥ t)

)(

Xk
i −

∑n
l=1 X

k
l 1(Zl ≥ t)

∑n
l=1 1(Zl ≥ t)

)

dt,

and where hn ∈ Rd has coordinates

(hn)j =
1

n

n
∑

i=1

δi
(

Xj
i −

∑n
k=1 X

j
k1(Zk ≥ Zi)

∑n
k=1 1(Zk ≥ Zi)

)

.

When d ≤ n and if Hn is full rank, we can write

β̂ = (Hn)
−1

hn,

see also [19] or [25]. The estimator β̂ is
√
n-consistent and asymptotically Gaus-

sian, see e.g. [2].
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When X contains genomic outcomes, one typically has d ≫ n, and the matrix
Hn is no longer of full rank. A sparsity assumption is then natural in this
setting: we expect only a few genes to have an influence on the survival times,
so we expect β0 to be sparse, which means that it has only a few non-zero
coordinates. Several papers use sparsity inducing penalization in the context of
survival analysis, mainly for the Cox multiplicative risks model or the Aalen
additive risks model, we refer to [35] for a review. Most procedures are based
on ℓ1-penalization, where one considers

β̂ ∈ argmin
β∈Rd

{

Rn(β) + λ
d

∑

j=1

wj |βj |
}

. (1)

The smoothing parameter λ > 0 makes the balance between goodness-of-fit and
sparsity, and the wj ≥ 0, j = 1, . . . , d are weights allowing for a precise tuning
of the penalization. The Lasso penalization corresponds to the simple choice
wj = 1, while in the adaptive Lasso [38] one chooses wj = |β̃j |−γ where β̃j is a
preliminary estimator and γ > 0 a constant. The idea behind this is to correct
the bias of the Lasso in terms of variable selection accuracy, see [38] and [37]
for regression analysis. The weights wj can also be used to scale each variable
at the same level, which is suitable when some variable has a strong variance
compared to the others. As a by-product of the theoretical analysis given in
this paper, we introduce a new way of scaling the variables using data-driven
weights ŵj in the ℓ1 penalization, see (14) below.

In the Cox proportional hazards model, Rn(β) is the partial likelihood (see
e.g. [10] or [2]), for which the Lasso, adaptive Lasso, smooth clipped absolute
deviation penalizations and the Dantzig selector are considered, respectively, in
[31, 39, 36, 12] and [3].

For the additive risks, [22] considers principal component regression, [21]
considers a Lasso with a least-squares criterion that differs from the one consid-
ered here, [18, 25] considers the ridge, Lasso and adaptive Lasso penalizations
and [24] considers the partial least-squares and ridge regression estimators.

A serious advantage, from the computational point of view, in using additive
risks over multiplicative risks has to be highlighted. Indeed, for the additive
risks, the estimating Equation (1) has a least-squares form, so that one can
apply in this case the fast Lars algorithm [11] in order to obtain the whole
path of solutions of the Lasso, as explained in [18] for instance. This point is
particularly relevant in practice, since one typically uses splitting techniques,
such as cross-validation, to select the smoothing parameter, or ensemble feature
methods, such as stability selection [27], to select covariates. The motivations
and main contributions of this work are enumerated in the following.

First motivation. Among the papers that propose some mathematical anal-
ysis of the statistical properties of estimators of the form (1) (upper bounds,
support recovery, etc.), the results are asymptotic in the number of observa-
tions. This can be a problem since, in practice, one can not, in general, consider
that the asymptotic regime has been reached: in [30], for example, the expres-
sion levels of 8810 genes and survival information are measured for only 92
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patients. Considering only the references that are the closest to the work pro-
posed here, the oracle property for the adaptive Lasso is given in [18], which
is an asymptotic property about the support and the asymptotic distribution
of the estimator, and asymptotic normality and consistency in variable selec-
tion for the adaptive Lasso is proved in [25], where results about the Dantzig
selector are also derived using the restricted isometry property and the uniform
uncertainty principle from [8]. While non-asymptotic results, like sparse oracle
inequalities for instance, are now well-known for regression or density estimation
(see for instance [7, 5, 4], among many others), such results are not yet available
for survival data. In this paper, we establish the first results of this kind for
survival analysis.

Second motivation.We give sharp oracle inequalities (with leading constant 1)
for the prediction error associated to the survival problem. The results are stated
for general counting processes, including the censoring case, while most papers
consider censored data only. Our results are stated without the assumption that
the intensity is linear in the covariates. In fact, our Lasso estimator can be
computed using an arbitrary dictionary of functions, so that one can expect a
better approximation of the true underlying intensity.

Third motivation. In order to prove our results, we need a new version of Bern-
stein’s inequality for martingales with jumps, where the predictable variation,
which is not observable in this problem, is replaced by the optional variation,
which is observable. This concentration inequality is of independent interest,
and could be useful for other statistal problems as well.

Fourth motivation. Finally, and more importantly, our non-asymptotic anal-
ysis leads to an adaptive data-driven weighting of the ℓ1-norm, that involves the
optional variation of each element of the dictionary (or of each covariate in the
linear case). More precisely, our sharp control of the noise term exhibits the fact
that the ℓ1-penalization (see (1)) should be scaled using data-driven weights of
order (writing only the dominating terms, see Section 3 for details)

ŵj ≈
√

x+ log d

n
V̂j ,

where

V̂j =
1

n

n
∑

i=1

δi
(

Xj
i −

∑n
k=1 X

j
k1(Zk ≥ Zi)

∑n
k=1 1(Zk ≥ Zi)

)2

corresponds, roughly, to an estimate of the variance of variable j. Hence, our
theoretical analysis exhibits a new way of tuning the ℓ1 penalization, by mul-
tiplying each coordinate by this empirical variance term, in order to make less
apparent eventual differences between the variability of eachXj for j = 1, . . . , d.
This particular form of weighting, or scaling of the variables, was not previsouly
noticed in literature.

The paper is organized as follows. Section 2 describes the model. The Lasso
estimator is constructed in Section 3. Oracle inequalities for the Lasso are given
in Section 4, see Theorems 1 and 2. Some details about the construction of
the least-squares criterion are given in Section 6.1. The data-driven Bernstein’s
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inequality is stated in Section 5, see Theorem 3, and the proofs of our results
are given in Section 6.

2. High dimensional Aalen model

Let (Ω,F ,P) be a probability space and (Ft)t≥0 a filtration satisfying the usual
conditions: increasing, right-continuous and complete (see [14]). Let N be a
marked counting process with compensator Λ with respect to (Ft)t≥0, so that
M = N − Λ is a (Ft)t≥0-martingale. We assume that N is a marked point
process satisfying the Aalen multiplicative intensity model. This means that Λ
writes

Λ(t) =

∫ t

0
α0(s,X)Ysds (2)

for all t ≥ 0, where:

• the intensity α0 is an unknown deterministic and nonnegative function
called intensity

• X ∈ Rd is a F0-measurable random vector called covariates or marks ;
• Y is a predictable random process in [0, 1].

With differential notations, this model can be written has

dNt = α0(t,X)Yt dt+ dMt (3)

for all t ≥ 0 with the same notations as before, and taking N0 = 0. Now, assume
that we observe n i.i.d. copies

Dn = {(Xi, N
i
t , Y

i
t ) : t ∈ [0, τ ], 1 ≤ i ≤ n} (4)

of {(X,Nt, Yt) : t ∈ [0, τ ]}, where τ is the end-point of the study. Without loss
of generality, we set τ = 1. We can write

dN i
t = α0(t,Xi)Y

i
t dt+ dM i

t

for any i = 1, . . . , n where M i are independent (Ft)t≥0-martingales. In this
setting, the random variable N i

t is the number of observed failures during the
time interval [0, t] of the individual i. This model encompasses several particular
examples: censored data, marked Poisson processes and Markov processes, see
e.g. [2] for a precise exposition. In the censored case, described in the Introduc-
tion, the random processes in Dn, see Equation (4), are given by

N i(t) = 1(Zi ≤ t, δi = 1) and Y i(t) = 1(Zi ≥ t)

for i = 1, . . . , n and 0 ≤ t ≤ 1.
In this paper, we assume that the intensity function satisfies the Aalen addi-

tive model in the sense that it writes

α0(t, x) = λ0(t) + h0(x), (5)
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where λ0 : R+ → R+ is a nonparametric baseline intensity and h0 : Rd → R+.
Note that in the “usual” Aalen additive model, see [19, 26, 24, 25], the function
h0 is linear:

h0(x) = x⊤β0,

where β0 is an unknown vector in Rd. The aim of the paper is to recover the
function h0 based on the observation of the sample Dn.

3. Construction of an ℓ1-penalization procedure

3.1. A least-squares type functional

The problem considered here is a regression problem: we want to explain the
influence of the covariates Xi on the survival data N i and Y i. Namely, we
want to infer on h0, while the baseline function λ0 is considered as a nuisance
parameter. Thanks to the additive structure (5), we can construct an estimator
of h0 without any estimation of λ0, so that the influence of the covariates on
the survival data can be infered without any knowledge on λ0. This classical
principle leads to the construction of the partial likelihood in the Cox model
(multiplicative risks, see [10]) and to the construction of the “partial” least-
squares (in reference to the partial likelihood) for the additive risks, see [19],
which is the one considered here. The “partial least-squares” criterion for a
“covariate” function h : Rd → R+ is defined as:

h -→
1

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))

2Y i
t dt−

2

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))dN

i
t , (6)

where

h̄Y (t) =

∑n
i=1 h(Xi)Y i

t
∑n

i=1 Y
i
t

.

It has been first introduced in [19]. The main steps leading to (6) are described in
Section 6.1 below, where we explain why it is indeed suitable for the estimation
of h0 (see in particular Equation (20)).

Now, we consider a set
H = {h1, . . . , hM}

of functions hj : RM → R+, called dictionary, where M is large (M ≫ n). The
set H can be a collection of basis functions, that can approximate the unknown
h, like wavelets, splines, kernels, etc. They can be also estimators computed
using an independent training sample, like several estimators computed using
different tuning parameters, leading to the so-called aggregation problem, see [6]
for instance. Implicitely, it is assumed that the unknown h0 is well-approximated
by a linear combination

hβ(x) =
M
∑

i=1

βjhj(x), (7)
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where β ∈ RM is to be estimated. However, note that we won’t assume, for the
statements of our results, that the unknown h0 is equal to hβ0

for some unknown
β0 ∈ RM , hence allowing for a model bias. Note that the setting considered here
includes the linear case: if hj(x) = xj with d = M , then the estimator has the

form ĥ(x) = x⊤β̂. Introducing

h̄j,Y (t) =

∑n
i=1 hj(Xi)Y i

t
∑n

i=1 Y
i
t

and h̄β,Y (t) =
M
∑

j=1

βj h̄j,Y (t), (8)

we define the least-squares risk of β ∈ RM as

Rn(β) =
1

n

n
∑

i=1

∫ 1

0
(hβ(Xi)− h̄β,Y (t))

2Y i
t dt−

2

n

n
∑

i=1

∫ 1

0
(hβ(Xi)− h̄β,Y (t))dN

i
t ,

(9)
which is equal to the functional (6) where we applied (7). Note that (9) is a
least-squares criterion, since

Rn(β) = β⊤Hnβ − 2β⊤
hn, (10)

where Hn is the M ×M matrix with entries

(H)j,k =
1

n

n
∑

i=1

∫ 1

0
(hj(Xi)− h̄j,Y (t))(hk(Xi)− h̄k,Y (t))Y

i
t dt, (11)

and where hn ∈ RM has coordinates

(hn)j =
1

n

n
∑

i=1

∫ 1

0
(hj(Xi)− h̄j,Y (t))dN

i
t .

Since Hn is a symetrical positive semidefinite matrix, we can take

Gn = H1/2
n ,

so that
Rn(β) = |Gnβ|22 − 2β⊤

hn,

where |x|2 stands for the ℓ2-norm of x ∈ Rn. Note that we will denote by |x|p
the ℓp norm of x.

3.2. ℓ1-penalization for the Aalen model

For the problem considered here, we have seen that the empirical risk Rn has to
be chosen with care. This is also the case for the ℓ1 penalization to be used for
this problem. Namely, for a well-chosen sequence of positive data-driven weights
ŵ = (ŵ1, . . . , ŵM ), we consider the weighted ℓ1-norm

pen(b) = |b|1,ŵ =
M
∑

j=1

ŵj |bj|, (12)
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and choose β̂ according to the following penalized criterion:

β̂n ∈ argmin
b∈B

{

Rn(b) + pen(b)
}

(13)

where B is an arbitrary convex set (typically B = RM or B = RM
+ , the latter

making hβ̂n
non-negative). The weights considered in (13) are given by ŵj =

ŵ(hj) (where we recall that hj ∈ H) and where for any function h, we take

ŵ(h) = c1

√

x+ logM + ℓ̂n,x(h)

n
V̂ (h) + c2

x+ 1 + logM + ℓ̂n,x(h)

n
∥h∥n,∞,

(14)
where:

• x > 0 and c1 = 2
√
2, c2 = 4

√

14/3 + 2/3,
• ∥h∥n,∞ = maxi=1,...,n |h(Xi)|,
• V̂ (h) is a term corresponding to the “observable empirical variance” of h
(see below for details), given by

V̂ (h) =
1

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))

2dN i
t ,

• ℓ̂n,x(h) is a small technical term coming out of our analysis:

ℓ̂n,x(h) = 2 log log
(6enV̂ (h) + 56x∥h∥2n,∞

24x∥h∥2n,∞
∨ e

)

.

Note that the weights ŵj are fully data-driven. The shape of these weights comes
from a new empirical Bernstein’s inequality involving the optional variation of
the noise process of the model, see Theorem 3 in Section 5 below.

The penalization (12) is tuned for the estimation problem at hand. It uses
the estimator V̂ (h) of the (unobservable) predictable quadratic variation

V (h) =
1

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))

2α0(t,Xi)Y
i
t dt,

and it does not depend on an uniform upper bound for h. As a consequence,
it can give, from a practical point of view, some insight into the tuning of the
ℓ1-penalization. In particular, our analysis prove that the j-th coordinate of β
in the ℓ1 penalization should be rescaled by V̂ (hj)1/2. Note that this was not
previously noticed in literature, in part because most results are stated using
an asymptotic point of view, see the references mentioned in Introduction.

4. Oracle inequalities

If β ∈ RM , we denote its support by J(β) = {j ∈ {1, . . . ,M} : βj ̸= 0} and

its sparsity is |β|0 = |J(β)| =
∑M

j=1 1(βj ̸= 0), where 1(A) is the indicator of A
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and |B| is the cardinality of a finite set B. If J ⊂ {1, . . . ,M}, we also introduce
the vector βJ such that (βJ )j = βj if j ∈ J and (βJ )j = 0 if j ∈ J!, where
J! = {1, . . . ,M}− J . We define the empirical norm of a function h by

∥h∥2n =
1

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))

2Y i
t dt, (15)

and remark that ∥hβ∥2n = |Gnβ|22/n.
Below are two oracle inequalities for hβ̂ . The first one (Theorem 1) is a “slow”

oracle inequality, with a rate of order (logM/n)1/2, which holds without any
assymption on the Gram matrix Gn. The second one (Theorem 2) is an oracle
inequality with a fast rate of order logM/n, that holds under an assumption on
the restricted eigenvalues of Gn.

Theorem 1. Let x > 0 be fixed, and let ĥ = hβ̂, where

β̂n ∈ argmin
b∈B

{

Rn(b) + pen(b)
}

,

with pen(b) given by (12). Then we have, with a probability larger than 1−29e−x:

∥ĥ− h0∥2n ≤ inf
β∈B

(

∥hβ − h0∥2n + 2pen(β)
)

.

Note that

pen(β) ≤ |β|1 max
j=1,...,M

[

c1

√

x+ logM + ℓ̂n,x(hj)

n
V̂ (hj)

+ c2
x+ 1 + logM + ℓ̂n,x(hj)

n
∥hj∥n,∞

]

for any β ∈ R, so the dominant term in pen(β) is, up to the slow log log term, of
order |β|1

√

logM/n, which is the expected slow rate for ĥ involving the ℓ1-norm
(see [5] for the regression model and [7, 4] for density estimation).

For the proof of oracle inequalities with a fast logM/n rate, the restricted
eigenvalue (RE) condition introduced in [5] and [15, 16] is of importance. Re-
stricted eigenvalue conditions are implied by, and in general weaker than, the
so-called incoherence or RIP assumptions, which excludes strong correlations
between covariates. This condition is acknowledged to be one of the weakest
to derive fast rates for the Lasso. One can find in [33] an exhaustive survey
and comparison of the assumptions used to prove fast oracle inequalities for
the Lasso, where the so-called “compatibility condition”, which is slightly more
general than RE, is described.

The restricted eigenvalue condition is defined below. Note that our presenta-
tion (and arguments used in the proof of Theorem 2) is close to [17], where oracle
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inequalities for the matrix Lasso are given. Let us introduce, for any β ∈ RM

and c0 > 0, the cone

Cβ,c0 =
{

b ∈ R
M : |bJ(β)! |1,ŵ ≤ c0|bJ(β)|1,ŵ

}

. (16)

The cone Cβ,c0 consists of vectors that have a support close to the support of
β. Then, introduce

µc0(β) = inf
{

µ > 0 : |bJ(β)|2 ≤
µ√
n
|Gnb|2 ∀b ∈ Cβ,c0

}

. (17)

The number 1/µc0(β) is an uniform lower bound for |Gnb|2/|bJ(β)|2 over b ∈
Cβ,c0. Hence, it is a lower bound for “eigenvalues” restricted over vectors with a
support close to the support of β. Also, note that c -→ µc(β) is non-increasing.

Theorem 2. Let x > 0 be fixed and let ĥ = hβ̂, where

β̂n ∈ argmin
b∈B

{

Rn(b) + 2 pen(b)
}

,

with pen(b) given by (12). Then we have, with a probability larger than 1−29e−x:

∥hβ̂ − h0∥2n ≤ inf
β∈B

(

∥hβ − h0∥2n +
9

4
µ3(β)

2|ŵJ(β)|22
)

,

where
|ŵJ(β)|22 =

∑

j∈J(β)

ŵ2
j .

Note that

|ŵJ(β)|22 ≤ 2|β|0 max
j∈J(β)

[

c21
x+ logM + ℓ̂n,x(hj)

n
V̂ (hj)

+ c22

(x+ 1 + logM + ℓ̂n,x(hj)

n
∥hj∥n,∞

)2
]

,

so the dominant term is (up to the log log term) of order |β|0 logM/n. This
is the fast rate to be found in sparse oracle inequalities [5, 15, 8]. Moreover,
note that the (sparse) oracle inequality in Theorem 2 is sharp, in the sense that
there is a constant 1 in front of the oracle term infβ∈B ∥hβ−h0∥2n, see Remark 2
below.

Now, let us state Theorem 2 under the restricted eigenvalue condition.

Assumption 1 (RE(s, c0) [5]). For some integer s ∈ {1, . . . ,M} and a constant
c0 > 0, we assume that Gn satisfies:

0 < κ(s, c0) = min
J⊂{1,...,M},

|J|≤s

min
b∈R

M\{0},
|b

J! |1,ŵ≤c0|bJ |1,ŵ

|Gnb|2√
n|bJ |2



532 S. Gäıffas and A. Guilloux

Note that using the previous notations, we have

κ(s, c0) = min
b∈R

M\{0}
|b|0≤s

1

µc0(b)
.

Corollary 1. Let x > 0, s ∈ {1, . . . ,M} be fixed and let ĥ be the same as in
Theorem 2. Then, under Assumption RE(s, 3), we have, with a probability larger
than 1− 29e−x:

∥hβ̂ − h0∥2n ≤ inf
β∈B
|β|0≤s

(

∥hβ − h0∥2n +
9

4κ(s, 3)2
|ŵJ(β)|22

)

.

Remark 1. Note that the constant c0 = 3 (for µc0(β)) is used in Theorem 2.
This is because with a large probability, β̂ − β belongs to the cone Cβ,3. Such
an argument of cone constraint is at the core of the convex analysis underlying
the proof of fast oracle inequalities for the Lasso, see for instance [8, 5, 17].

Remark 2. We were able to prove a sharp sparse oracle inequality (with leading
constant 1), because we adapted in our context a recent argument from [17], that
uses some tools from convex analysis (such as the fact that the subdifferential
mapping is monotone, see [29]) in the study of β̂ as the minimum of the convex
functional Rn + pen.

5. An empirical Bernstein’s inequality

The proofs of Theorems 1 and 2 require a sharp control of the “noise term”
arising from model (3). For a fixed function h, this noise term is the stochastic
process

Zt(h) =
1

n

n
∑

i=1

∫ t

0
(h(Xi)− h̄Y (s))dM

i
s,

where we recall that M i
t = N i

t −Λi
t are i.i.d. martingales with jumps with jumps

of size +1, as we assume the existence of the intensity function α0, see (2). In
order to give an upper bound on |Zt| that holds with a large probability, one can
use Bernstein’s inequality for martingales with jumps, see [20], and note that
a proof of this fact is implicit in the proof of Theorem 3, see Section 6 below.
Applied to the process Zt(h), this writes

P

[

|Zt(h)| ≥
√

2vx

n
+

x

3n
, Vt(h) ≤ v

]

≤ 2e−x

for any x, v > 0, where

Vt(h) = n⟨Z(h)⟩t =
1

n

n
∑

i=1

∫ t

0
(h(Xi)− h̄Y (s))

2α0(s,Xi)Y
i
s ds
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is the predictable variation of Zt, which will also be referred to as variance
term. But, since the term Vt(h) depends explicitly on the unknown intensity α0,
one cannot use it in the penalizing term of the Lasso estimator. Morever, this
result is stated on the event {Vt ≤ v} while we would like an inequality that
holds in general. Hence, we need a new Bernstein’s type inequality, that uses
an observable empirical variance term instead of Vt(h). We prove in Theorem 3
below that we can replace Vt(h) by the optional variation of Zt(h), which can
be also seen as an estimator of Vt(h) and is defined as:

V̂t(h) = n[Z(h)]t =
1

n

n
∑

i=1

∫ t

0
(h(Xi)− h̄Y (s))

2dN i
s.

Moreover, our result holds in general, and not on {Vt(h) ≤ v}. The counterpart
for this is the presence of a small log log term in the upper bound for |Zt(h)|.

Theorem 3. For any numerical constants cℓ > 1, ϵ > 0 and c0 > 0 such that
ec0 > 2(4/3 + ϵ)cℓ, the following holds for any x > 0:

P

[

|Zt(h)| ≥ c1

√

x+ ℓ̂n,x(h)

n
V̂t(h) + c2

x+ 1 + ℓ̂n,x(h)

n
∥h∥n,∞

]

≤ c3e
−x, (18)

where

ℓ̂n,x(h) = cℓ log log
(2enV̂t(h) + 8e(4/3 + ϵ)x∥h∥2n,∞

4(ec0 − 2(4/3 + ϵ)cℓ)∥h∥2n,∞
∨ e

)

,

∥h∥n,∞ = max
i=1,...,n

|h(Xi)|

and where

c1 = 2
√
1 + ϵ, c2 = 2

√

2max(c0, 2(1 + ϵ)(4/3 + ϵ)) + 2/3,

c3 = 8 + 6(log(1 + ϵ))−cℓ
∑

j≥1

j−cℓ .

By choosing cℓ = 2, ϵ = 1 and c0 = 4(4/3 + ϵ)cℓ/e = 56/(3e), Inequality (18)
holds with the following numerical values:

c1 = 2
√
2, c2 = 4

√

14/3 + 2/3 ≤ 9.31

c3 = 8 + (log 2)−2π2 + 4 ≤ 28.55,

ℓ̂n,x(h) = 2 log log
(2enV̂t(h) + 56ex∥h∥2n,∞/3

8∥h∥2n,∞
∨ e

)

.

The concentration inequality (18) is fully data-driven, since the random vari-
able that upper bounds |Zt(h)| with a large probability is observable. Note that
the numerical values given in Theorem 3 are the one used in the construction of
the ℓ1-penalization (12). These are chosen for the sake of simplicity, but another
combination of numerical values can be considered as well.
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The idea of using Bernstein’s deviation inequality with an estimated variance
is of importance for statistical problems. In [4] for instance, a Bernstein’s in-
equality with empirical variance is derived in order to study the Dantzig selector
for density estimation. Note that, however, we are not aware of a previous result
such as Theorem 3 for continuous time martingales with jumps, excepted for
a work in progress [13], which uses a similar concentration inequalities in the
context of point processes.
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6. Proofs

6.1. Decomposition of the least-squares

In this section, we give the details of the construction of the partial least-
squares (6). It is based on the decomposition, using the additive structure (5),
of the least-squares risk for counting processes depending on covariates, see for
instance [28] and [9]. In model (3), on the basis of the observations (4), the
least-squares functional to be considered for the estimation of α0 is given by

Ln(α) =
1

n

n
∑

i=1

∫ 1

0
α2(t,Xi)Y

i
t dt−

2

n

n
∑

i=1

∫ 1

0
α(t,Xi)dN

i
t ,

where α : R+ × Rd → R+. Now, if α(t, x) = λ(t) + h(x), we can decompose Ln

in the following way:

Ln(α) = Ln,1(λ) + Ln,2(h) + Ln,3(λ, h), (19)

where

Ln,1(λ) =
1

n

n
∑

i=1

∫ 1

0
(λ(t) + h̄Y (t))

2Y i
t dt−

2

n

n
∑

i=1

∫ 1

0
(λ(t) + h̄Y (t))dN

i
t

Ln,2(h) =
1

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))

2Y i
t dt−

2

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))dN

i
t

Ln,3(λ, h) =
2

n

n
∑

i=1

∫ 1

0
(λ(t) + h̄Y (t))(h(Xi)− h̄Y (t))Y

i
t dt,

where, as introduced in Section 3:

h̄Y (t) =

∑n
i=1 h(Xi)Y i

t
∑n

i=1 Y
i
t

.

Now, the point is that, according to Lemma 1 below, the term Ln,3 is zero.
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Lemma 1. For any function h : Rd → R+ and any function ϕ : R+ → R+, we
have

n
∑

i=1

∫ 1

0
ϕ(t)(h(Xi)− h̄Y (t))Y

i
t dt = 0.

Lemma 1 follows from an easy computation which is omitted. The term Ln,2

in (19) is the partial least-squares criterion considered in Section 3, see Equa-
tion (6). We now explain why it is suitable for the estimation of h0. If the
Aalen additive model holds, we have dN i

t = (λ0(t) + h0(Xi))Y i
t dt+ dM i

t for all
i = 1, . . . , n, so we can write, using again Lemma 1:

Ln,2(h) =
1

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))

2Y i
t dt

−
2

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))(h0(Xi)− h̄0,Y (t))Y

i
t dt

−
2

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))dM

i
t ,

where

h̄0,Y (t) =

∑n
i=1 h0(Xi)Y i

t
∑n

i=1 Y
i
t

.

Now, using the empirical norm ∥ · ∥2n defined in Equation (15), see Section 3
above, we can finally write

Ln,2(h) = ∥h− h0∥2n − ∥h0∥2n −
2

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))dM

i
t . (20)

The last term in the right hand side of (20) is a noise term, with tails controlled
in Section 5 above. It is now understood that finding a minimizer of Ln,2, or a
penalized version of it, is a natural way of estimating h0. We refer the reader
to [25] for an other justification of the “partial least-squares” criterion in the
linear case h0(x) = x⊤β0.

6.2. Proof of Theorem 3

For i = 1, . . . , n, the processes N i are i.i.d. counting processes satisfying the
Doob-Meyer decompositionN i

t−
∫ t
0 α0(s,Xi)Y i

s ds = M i
t , see Equation (3). This

implies that the processes M i are i.i.d. centered martingales, with predictable
variation ⟨M i⟩t =

∫ t
0 α0(s,Xi)Y i

s dt and optional variation [M i]t = N i
t , see

e.g. [2] for details. Moreover, the jumps of each M i, denoted by ∆M i
t = M i

t −
M i

t− , are in {0, 1}. Introduce the process

Ut =
1

n

n
∑

i=1

∫ t

0
Hi

sdM
i
s
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where

Hi
t =

h(Xi)− h̄Y (t)

2maxi=1,...,n |h(Xi)|
.

Note that |Hi
t | ≤ 1. Since Hi is predictable and bounded, the process U is

a square integrable martingale, as a sum of square integrable martingales. Its
predictable variation ⟨U⟩ is given by:

ϑt = n⟨U⟩t =
1

n

n
∑

i=1

∫ t

0
(Hi

s)
2α0(s,Xi)Y

i
s ds,

while its optional variation [U ] is given by

ϑ̂t = n[U ]t =
1

n

n
∑

i=1

∫ t

0
(Hi

s)
2dN i

s.

From [32], we know that
exp(λUt − Sλ(t)) (21)

is a supermartingale if Sλ is the compensator of

Et =
∑

0≤s≤t

{

exp(λ∆Us)− 1− λ∆Us

}

.

We now derive the expression of Sλ. The process E can also be written as

Et =
∑

s≤t

∑

k≥2

λk

k!
(∆U(s))k =

∑

s≤t

∑

k≥2

λk

k!nk

(

∆
(

n
∑

i=1

∫ s

0
Hi

udM
i
u

)

)k

=
∑

s≤t

∑

k≥2

λk

k!nk

n
∑

i=1

(

∆

∫ s

0
Hi

udM
i
u

)k
,

where the last inequality holds almost surely, since the M i are independent,
hence do not jump at the same time (with probability 1). Now, note that

(

∆

∫ s

0
Hi

udM
i
u

)k
= (Hi

s)
k∆M i(s) = (Hi

s)
k∆N i(s),

so that we have

Sλ(t) =
n
∑

i=1

∫ t

0
φ
(λ

n
Hi

s

)

α0(s,Xi)Y
i
s ds

with φ(x) = ex − x− 1. The fact that (21) is a supermartingale entails

P

[

Ut ≥
Sλ(t)

λ
+

x

λ

]

≤ e−x (22)

for any λ, x > 0. The following facts hold true:
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• φ(xh) ≤ h2φ(x) for any 0 ≤ h ≤ 1 and x > 0;

• φ(λ) ≤ λ2

2(1−λ/3) for any λ ∈ (0, 3);

• minλ∈(0,1/b)

(

aλ
1−bλ + x

λ

)

= 2
√
ax+ bx, for any a, b, x > 0.

For any w > 0, they entail the following embeddings:

{

Ut ≥
√

2wx

n
+

x

3n
,ϑt ≤ w

}

=
{

Ut ≥
λw

2(n− λw/3)
w +

x

λw
,ϑt ≤ w

}

⊂
{

Ut ≥
φ(λw/n)

λw
nϑt +

x

λw
,ϑt ≤ w

}

⊂
{

Ut ≥
Sλw (t)

λw
+

x

λw
,ϑt ≤ w

}

, (23)

where λw achieves the infimum. This leads to the standard Bernstein’s inequal-
ity:

P

[

Ut ≥
√

2wx

n
+

x

3n
,ϑt ≤ w

]

≤ e−x.

By choosingw = c0(x+1)/n for some constant c0 > 0, this gives the following in-
equality, which says that when the variance term ϑt is small, the sub-exponential
term is dominating in Bernstein’s inequality:

P

[

Ut ≥
(√

2c0 +
1

3

)x+ 1

n
,ϑt ≤

c0(x+ 1)

n

]

≤ e−x. (24)

For any 0 < v < w < +∞, we have

{

Ut ≥
√

2wϑtx

vn
+

x

3n

}

∩ {v <ϑt ≤w} ⊂
{

Ut ≥
√

2wx

n
+

x

3n

}

∩ {v <ϑt ≤w},

so, together with (22) and (23), we obtain

P

[

Ut ≥
√

2wϑtx

vn
+

x

3n
, v < ϑt ≤ w

]

≤ e−x. (25)

Now, we want to replace ϑt by the observable ϑ̂t in the deviation (25). Note
that the process Ũt given by

Ũt = ϑ̂t − ϑt =
1

n

n
∑

i=1

∫ t

0
(Hi

s)
2
(

dN i
s − α0(s,Xi)Y

i
s ds

)

=
1

n

n
∑

i=1

∫ t

0
(Hi

s)
2dM i

s

is a martingale, so following the same steps as for Ut, we obtain that exp(Ũt −
λS̃λ(t)) is a supermartingale, with

S̃λ(t) =
n
∑

i=1

∫ t

0
φ
(λ

n
(Hi

s)
2
)

α0(s,Xi)Y
i
s ds.
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Now, writing again (23) for Ũt with the fact that |Hi
t | ≤ 1 and using the same

arguments as before, we arrive at

P

[

|ϑ̂t − ϑt| ≥
φ(λ/n)

λ
nϑt +

x

λ

]

≤ 2e−x

and

P

[

|ϑ̂t − ϑt| ≥
√

2wϑtx

vn
+

x

3n
, v < ϑt ≤ w

]

≤ 2e−x. (26)

But, if ϑt satisfies

|ϑ̂t − ϑt| ≤
√

2wϑtx

vn
+

x

3n
,

then it satisfies

ϑt ≤ 2ϑ̂t + 2
(w

v
+

1

3

)x

n

and

ϑ̂t ≤ 2ϑt + 2
(1

3
+

√

w

v

(1

3
+

w

v

)

+
2w

v

)x

n
,

simply by using the fact that A ≤ b+
√
aA entails A ≤ a+2b for any a,A, b > 0.

This proves that

{

Ut ≤
√

2wϑtx

vn
+

x

3n

}

∩
{

|ϑ̂t − ϑt| ≤
√

2wϑtx

vn
+

x

3n

}

⊂
{

Ut ≤ 2

√

wx

vn
ϑ̂t +

(

2

√

w

v

(w

v
+

1

3

)

+
1

3

)x

n

}

,

(27)

so using (25) and (26), we obtain

P

[

Ut ≥ 2

√

wx

vn
ϑ̂t +

(

2

√

w

v

(w

v
+

1

3

)

+
1

3

)x

n
, v ≤ ϑt < w

]

≤ 3e−x.

This inequality is similar to (25), where we replaced ϑt by the observable ϑ̂t

in the sub-Gaussian term. It remains to remove the event {v ≤ ϑt < w} from
this inequality. First, recall that (24) holds, so we can work on the event {ϑt >
c0(x+ 1)/n} from now on. We use a peeling argument: define, for j ≥ 0:

vj = c0
x+ 1

n
(1 + ϵ)j ,

and use the following decomposition into disjoint sets:

{ϑt > v0} =
⋃

j≥0

{vj < ϑt ≤ vj+1}.

We have

P

[

Ut ≥ c1,ϵ

√

x

n
ϑ̂t + c2,ϵ

x

n
, vj < ϑt ≤ vj+1

]

≤ 3e−x,
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where we introduced the constants

c1,ϵ = 2
√
1 + ϵ and c2,ϵ = 2

√

(1 + ϵ)(4/3 + ϵ) + 1/3.

Let us introduce

ℓ = cℓ log log
(ϑt

v0
∨ e

)

,

where cℓ > 1. On the event

{

|ϑ̂t − ϑt| ≤
√

2(1 + ϵ)ϑt(x+ ℓ)

n
+

x+ ℓ

3n

}

we have

ϑt ≤ 2ϑ̂t + 2(4/3 + ϵ)
x

n
+

2(4/3 + ϵ)cℓ
n

log log
(ϑt

v0
∨ e

)

,

which entails, assuming that ec0 > 2(4/3 + ϵ)cℓ:

ϑt ≤
ec0

ec0 − 2(4/3 + ϵ)cℓ

(

2ϑ̂t + 2(4/3 + ϵ)
x

n

)

,

where we used the fact that log log(x) ≤ x/e − 1 for any x ≥ e. This entails,
together with (27), the following embedding:

{

Ut ≤
√

2(1 + ϵ)ϑt(x+ ℓ)

n
+

x+ ℓ

3n

}

∩
{

|ϑ̂t − ϑt| ≤
√

2(1 + ϵ)ϑt(x + ℓ)

n
+

x+ ℓ

3n

}

⊂
{

Ut ≤ c1,ϵ

√

ϑ̂t(x+ ℓ̂)

n
+ c2,ϵ

x+ ℓ̂

n

}

,

where

ℓ̂ = cℓ log log
(2enϑ̂t + 2e(4/3 + ϵ)x

ec0 − 2(4/3 + ϵ)cℓ
∨ e

)

.

Now, using the previous embeddings together with (25) and (26), we obtain

P

[

Ut ≥ c1,ϵ

√

ϑ̂t(x+ ℓ̂)

n
+ c2,ϵ

x+ ℓ̂

n
,ϑt > v0

]

≤
∑

j≥0

P

[

Ut ≥
√

2(1 + ϵ)ϑt(x+ ℓ)

vn
+

x+ ℓ

3n
, vj < ϑt ≤ vj+1

]

+
∑

j≥0

P

[

|ϑ̂t − ϑt| ≥
√

2(1 + ϵ)ϑt(x+ ℓ)

n
+

x+ ℓ

3n
, vj < ϑt ≤ vj+1

]

≤ 3
(

e−x +
∑

j≥1

e−(x+cℓ log log(vj/v0))
)

= 3
(

1 + (log(1 + ϵ))−cℓ
∑

j≥1

j−cℓ
)

e−x.
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Together with (24), this gives

P

[

Ut ≥ c1,ϵ

√

ϑ̂t(x+ ℓ̂)

n
+ c3,ϵ

x+ 1 + ℓ̂

n

]

≤
(

4 + 3(log(1 + ϵ))−cℓ
∑

j≥1

j−cℓ
)

e−x,

where c3,ϵ =
√

2max(c0, 2(1 + ϵ)(4/3 + ϵ)) + 1/3. Now, it suffices to multiply
both sides of the inequality

Ut ≥ c1,ϵ

√

x+ ℓ̂

n
ϑ̂t + c3,ϵ

x+ 1 + ℓ̂

n

by 2∥h∥n,∞ to recover the statement of Theorem 3. !

6.3. Some notations and preliminary results for the proof of the
oracle inequalities

Let us introduce the following notations. Let h(·) = (h1(·), . . . , hM (·))⊤ and

h̄Y (·) = (h̄1,Y (·), . . . , h̄M,Y (·))⊤, so that hβ = h
⊤β and h̄β,Y = h̄

⊤
Y β. We will

use the notation ⟨·, ·⟩n for the following “empirical” inner-product between to
functions h, h′ : Rd → R+ (two “covariates” functions):

⟨h, h′⟩n =
1

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))(h

′(Xi)− h̄′
Y (t))Y

i
t dt,

and the corresponding empirical norm:

∥h∥2n =
1

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))

2Y i
t dt.

Note that with these notations, we have:

β⊤Hnβ
′ = ⟨hβ , hβ′⟩n.

To avoid any possible confusion, we will always write β⊤β′ for the Euclidean
inner product between two vectors β and β′ in RM .

In view of (11), we can write

Hn =
1

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))(h(Xi)− h̄Y (t))

⊤Y i
t dt,

and

hn =
1

n

n
∑

i=1

∫ 1

0
(h(Xi)− h̄Y (t))dN

i
t .

Now, in view of (5) and (3), the following holds:

hn = h
′
n +Zn, (28)
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where:

(h′
n)j =

1

n

n
∑

i=1

∫ 1

0
(hj(Xi)− h̄j,Y (t))(λ0(t) + h0(Xi))Y

i
t dt,

(Zn)j =
1

n

n
∑

i=1

∫ 1

0
(hj(Xi)− h̄j,Y (t))dM

i
t .

Using Lemma 1 two times, we obtain:

(h′
n)j =

1

n

n
∑

i=1

∫ 1

0
(hj(Xi)− h̄j,Y (t))(λ0(t) + h0(Xi))Y

i
t dt

=
1

n

n
∑

i=1

∫ 1

0
(hj(Xi)− h̄j,Y (t))h0(Xi)Y

i
t dt

=
1

n

n
∑

i=1

∫ 1

0
(hj(Xi)− h̄j,Y (t))(h0(Xi)− h̄0,Y (t))Y

i
t dt,

namely
(h′

n)j = ⟨hj , h0⟩n. (29)

6.4. Proof of Theorem 1

Recall that the empirical risk Rn is given by (10). As a consequence of (28)
and (29), we obtain the following decomposition of the empirical risk:

Rn(β) = β⊤Hnβ − 2β⊤
hn = ∥hβ∥2n − 2⟨hβ , h0⟩n − 2β⊤

Zn,

so, for any β ∈ RM , the following holds:

Rn(β̂)−Rn(β) = ∥hβ̂ − h0∥2n − ∥hβ − h0∥2n + 2(β − β̂)⊤Zn.

By definition of β̂, we have

Rn(β̂) + pen(β̂) ≤ Rn(β) + pen(β)

for any β ∈ RM , so:

∥hβ̂ − h0∥2n ≤ ∥hβ − h0∥2n + 2(β̂ − β)⊤Zn + pen(β) − pen(β̂).

Let us introduce the event

A =
M
⋂

j=1

{

2|(Zn)j | ≤ ŵj

}

, (30)

where the weights ŵj are given by (14). Using Theorem 3 together with an union
bound, we have that

P(A) ≥ 1− c3e
−x,
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where c3 is a purely numerical positive constant from Theorem 3. On A, we
have

|2(β̂ − β)⊤Zn| ≤
M
∑

j=1

ŵj |β̂j − βj | = |β̂ − β|1,ŵ,

so recalling that pen(β) =
∑M

j=1 ŵj |βj |, we obtain

∥hβ̂ − h0∥2n ≤ ∥hβ − h0∥2n + 2pen(β)

for any β ∈ RM , which is the statement of Theorem 1. !

6.5. Proof of Theorem 2

Recall the following notation: for any J ⊂ {1, . . . ,M} and x ∈ RM , we define
the vector xJ ∈ RM with coordinates by (xJ )j = xj when j ∈ J and (xJ )j = 0

if j ∈ J!, where J! = {1, . . . ,M}− J . Recall that

β̂ ∈ argmin
b∈B

{

Rn(b) + 2 pen(b)
}

, (31)

where B is a convex set. This proof uses arguments from [17]. We denote by
∂φ the subdifferential mapping of a convex function φ. The function b -→ Rn(b)
is differentiable, so the subdifferential of Rn(·) + 2 pen(·) at a point b ∈ RM is
given by

∂(Rn + 2pen)(b) = {∇Rn(b)}+ 2∂ pen(b) = {2Hnb− 2hn}+ 2∂ pen(b).

So, Equation (31) means that there is β̂∂ ∈ ∂ pen(β̂) such that ∇Rn(β̂) + 2β̂∂

belongs to the normal cone of B at β̂:

(2Hnβ̂ − 2hn + 2β̂∂)
⊤(β̂ − β) ≤ 0 ∀β ∈ B. (32)

Inequality (32) can be written, using (28) and (29), in the following way:

2⟨hβ̂ − hβ , hβ̂ − h0⟩n + 2(β̂∂ − β∂)
⊤(β̂ − β) ≤ −2β⊤

∂ (β̂ − β) + 2Z⊤
n (β̂ − β),

where chose any β∂ ∈ ∂ pen(β). Now, we use the fact that the subdifferential
mapping is monotone (this is an immediate consequence of its definition, see
[29], Chapter 24, p. 240) to say that (β̂∂ − β∂)⊤(β̂ − β) ≥ 0. Moreover, it is
standard to see that

∂|b|1,ŵ =
{

e+f : ej = ŵjsgn (bj) and fJ(b) = 0, |fj| ≤ ŵj for any j = 1, . . . ,M
}

,

where J(b) = {j : bj ̸= 0}. Let β ∈ B be fixed, and denote J = J(β) = {j : βj ̸=
0}. Consider e and f such that βδ = e+ f , with eJ! = 0. We have |e⊤(β̂−β)| ≤
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|β̂J − βJ |1,ŵ and we can take f such that f⊤(β̂ − β) = f⊤β̂J! = |β̂J! |1,ŵ. This
gives

2⟨hβ̂ − hβ, hβ̂ − h0⟩n + 2|β̂J! |1,ŵ ≤ 2|β̂J − βJ |1,ŵ + 2Z⊤
n (β̂ − β).

Using Pythagora’s Theorem, we have

2⟨hβ̂ − h0, hβ̂ − hβ⟩n = ∥hβ̂ − h0∥2n + ∥hβ̂ − hβ∥2n − ∥hβ − h0∥2n, (33)

so

∥hβ̂ − h0∥2n+∥hβ̂ − hβ∥2n + 2|β̂J! |1,ŵ

≤ ∥hβ̂ − h0∥2n + 2|β̂J − βJ |1,ŵ + 2Z⊤
n (β̂ − β).

If ⟨hβ̂ − h0, hβ̂ − hβ⟩n < 0, we have ∥hβ̂ − h0∥n < ∥hβ − h0∥n, which entails the
Theorem, so we assume that ⟨hβ̂ − h0, hβ̂ − hβ⟩n ≥ 0. In this case

2|β̂J! |1,ŵ ≤ 2⟨hβ̂ − h0, hβ̂ − hβ⟩n + 2|β̂J! |1,ŵ ≤ 2|β̂J − βJ |1,ŵ + 2Z⊤
n (β̂ − β),

which entails, together with the fact that, on A (see (30)), we have

2|Z⊤
n (β̂ − β)| = 2|(Zn)

⊤
J (β̂J − βJ )|+ 2|(Zn)

⊤
J! β̂J! | ≤ |β̂J − βJ |1,ŵ + |β̂J! |1,ŵ,

that

|β̂J! |1,ŵ ≤ 3|β̂J − βJ |1,ŵ.

This means that β̂ − β ∈ Cβ,3 (see (16)). So, using (17), we have

|β̂J − βJ |2 ≤ µ3(β)|Gn(β̂ − β)|2. (34)

Note that, on A, we have:

∥hβ̂ − h0∥2n + ∥hβ̂ − hβ∥2n + |β̂J! |1,ŵ ≤ ∥hβ − h0∥2n + 3|β̂J − βJ |1,ŵ.

A consequence of (34) is

|β̂J − βJ |1,ŵ ≤ |ŵJ |2|β̂J − βJ |2 ≤ µ3(β)|ŵJ |2|Gn(β̂ − β)|2,

so we arrive at

∥hβ̂ − h0∥2n ≤ ∥hβ − h0∥2n + 3µ3(β)|ŵJ |2∥hβ̂ − hβ∥n − ∥hβ̂ − hβ∥2n,

and finally

∥hβ̂ − h0∥2n ≤ ∥hβ − h0∥2n +
9

4
µ3(β)

2|ŵJ |22,

using the fact that ax− x2 ≤ a2/4 for any a, x > 0. !
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